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Abstract-Experimental data on the velocity and temperature fields of a heated turbulent supercritical- 
pressure carbon dioxide Bow in a 22.7 mm dia. vertical tube under the conditions of mixed convection are 
obtained. A comparative analysis of the results of measurements for buoyancy assisted and opposed 
upward and downward flows has allowed a conclusion that a relative deterioration in heat transfer in the 
case of an upward flow with the development of the inlet wall temperature peaks is attributable to the 
rearrangement of velocity fields and shear stresses in the course of which a fluid layer with reduced 
turbulence generation appears. Based on the results of measurements of velocity and temperature fields, 
heat transfer and hydraulic drag, the profiles of shear stresses and heat fluxes as well as the eddy diffusivities 
and turbulent Prandtl numbers have been calculated which are compared with some turbulent transfer 

models applied for calculating heat transfer in the supercritical region. 

1. INTRODUCTION 

MIXED convection is of frequent occurrence in tubes 
in the processes of heating supercritical-pressure fluids 
that have low viscosities and high thermal expansion 
coefficient which passes through a maximum in the 
vicinity of t,. Moreover, a substantial dependence 
of the level and behaviour of heat transfer on flow 
direction with respect to the gravity is observed [l, 
21. In vertical uniformly heated (qw = const.) tubes, 
which will be considered in what follows, the heat 
transfer coefficient for an upward flow can vary appre- 
ciably along the tube length resulting in the so-called 
inlet wall temperature peaks. These peaks may be 
hazardous for the tube, especially when they develop 
under substantially non-isothermal conditions, i.e. at 
great temperature drops between the wall and the flow 
(and, correspondingly, at great values of p,,/p,). 

In the case of the supercritical water or CO, flow 
in a tube having the diameter of about 20 mm, such 
a situation is typical of the region of ‘mean’ mass 
velocities of the heat transfer agent, m,, z 600-1.500 
kg mm2 s- ‘. For a downward flow in the indicated 
conditions the inlet peaks oft, are not observed and 
the heat transfer rate is higher and more uniform. At 
the present time, the mixed convection heat transfer 
in the near-critical region can be calculated only with 
an appreciable and almost unpredictable error, 
especially for an upward flow. This refers to both the 
calculations from the empirical formulae available in 
literature and numerical solutions of a system of 
differential equations for the process. Thus, in refs. 
[3-S], in which the buoyancy effect was taken into 
account only at the level of an averaged flow, the 

results of calculations are at variance with the exper- 
imental data and predict an increase in the heat trans- 
fer rate for an upward flow and its decrease for a 
downward flow. In refs. [6,7] the models of turbulent 
transfer have been developed which take into account 
the direct effect of buoyancy. In a number of cases 
these models allow one to obtain a satisfactory agree- 
ment with the experimental heat transfer data [8, 91. 
Unfortunately, the development of such models for 
the near-critical region is impeded by the paucity of 
reliable experimental data on hydraulic drag and 
internal flow structure. The previous relevant pub- 
lications [lo-141 have a number of methodological 
drawbacks which have already been pointed out earl- 
ier [ 15, 161. Therefore, the problem of obtaining 
reliable experimental data on the structure of tur- 
bulent flows in the near-critical region still remains 
particularly urgent. 

The present paper suggests experimental data on 
the structure, heat transfer and hydraulic drag of 
supercritical-pressure carbon dioxide, CO?, heated in 
a vertical tube and flowing upwards or downwards 
with the mass velocity mb = 800 and 1200 kg m-* s- ‘, 
respectively. The tube diameter is d = 22.7 mm, the 
pressure of CO2 is P = 9.0 MPa; the air admixture 

in CO, is of about 0.5 mole %. The experimental 
technique is described in detail elsewhere [16, 171. It 
needs only be repeated that measurements were car- 
ried out within the range 0 < R < 0.995 with a small 
Pitot tube and microthermocouples; for each mode 
of heat transfer 6-9 pairs of velocity and temperature 
profiles were measured along the tube length starting 
from x/d = 2.5 and thereafter with a step of 15d. 
Simultaneously, the distribution of static pressures 
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NOMENCLATURE 

thermal diffusivity 
constant in logarithmic enthalpy profile 
specific heat at constant pressure 

tube diameter, 2r, 
gravitational acceleration 
projection of acceleration of body 
forces on fluid flow direction 

enthalpy Greek symbols 
dimensionless enthalpy, (h, - h)pv,/q, 
parameter of fluid acceleration, K,,i Ku 
(plus sign for upward flow, minus 
sign for downward flow) 
parameter of the Hall and Jackson 
buoyancy effect [Z, 181 
parameter of thermal acceleration f I.51 
parameter of the effect of .Archimedes 
forces, Gr,,/( (Re;) 
mixing path length 
mass velocity, pu 
Nusselt number 

Ir coefficient of thermal expansion 
I-:, eddy diffusivity of momentum (I) 

8‘) eddy diffusivity of heat (1) 
A thermal conductivity 

p dynamic viscosity 

I 

kinematic viscosity, j&/p 
coefficient of friction resistance 

r 
S” coefficient of inertial resistance [ 151 

P density 
t shear stress. 

pressure 
Prandtl number 
mean Prandtl number, 

Pr,l(h, - ~~)~(~~ - fb)l!$h 
turbulent Prandtl number. c,/e, 

heat flux density in radial direction 
radius 
tube radius, d/2 
dimensionless radius, r/r0 
Reynolds number, m,,d/p,, 
gradient Richardson number, 

Cfl i;h/?r 

cp CJu/&ldu/l?rj 

Stanton number, qw/{mb(lzw--hb)] 
temperature 
streamwise velocity component 

Subscripts 
b bulk values ; at h = hh 
in at tube inlet 
lim limiting value in normal heat transfer 

regimes 
m at heat capacity maximum point at 

given pressure 
max maximum value ; at velocity maximum 

point 
N in normal heat transfer regime 
R according to Reichardt’s model 
stab under stabilized heat transfer 

conditions 
t turbulent characteristics 
W conditions on wall 
0 at constant physical properties ; 

when Ri -+ 0. 

dimensionless velocity, u/c, 
radial velocity component 
dynamic velocity, ,/(r,/p) 

longitudinal coordinate reckoned from 
the start of heating 
distance from wall along radius 
universal coordinate. _rr*/r 
dimensionless distance from wall, 
y/r,) = 1 -R 
relative eddy diffusivity of momentum, 
E, jr:,, 
relative eddy diffusivity of heat, $/a,,+ 

along the tube was measured. In the regimes calculated, as well as the eddy diffusivities of momen- 
considered, the balance of profiles on mass flow rate, turn and heat : 
and also on heat when .x/d > 17.5, converged with an 
error not exceeding i4%. Based on the results of % ? 5. - “pY 
thermal, hydraulic and probe measurements and 

-.=________ 
P %%J 

1; - -------_I. 
2. a/z/i+ 

(1) 
V n 

using a system of integral continuity, motion and 
energy equations. the profiles of z/z, and g/q, were The expc~mental data obtained were compared 
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between themselves, with the classical ideas on the 
structure of turbulent flows and with some turbulent 
transfer models used in calculations of heat transfer 
in the supercritical region. 

2. HEAT TRANSFER AND FRICTION 

The heat transfer regimes which will be considered 
in the paper are illustrated in Fig. 1. Among these, 
there are regimes with the ‘inlet’ wall temperature 
peaks of different intensity (Fig. l(a)) and regimes 
with monotonous heat transfer distribution along the 
tube length (Fig. l(b)) which can be regarded as being 
normal heat transfer modes [ 11. However, already in 
these regimes a certain difference in the upward and 
downward flow heat transfer appears which allows 
one to speak about the start of the effect of buoyancy. 
In Fig. 1 (c) the local Stanton numbers are compared 
with the normal heat transfer relation [ 151: 

St, = 
tJ8 

I +900/Re, + 12.7&/8)(Pr2” - 1) 
(2) 

where 

L/Sob = (&l&Y 4 (3) 

D,ar 0.1 , * ! ** 6 /f&j AtUp ‘fflJ 
-& -4/ -/ K P-/&P vv -too 

FIG. 1. Heat transfer regimes being discussed ; wall and fluid 
temperature (a, b), heat transfer and acceleration parameter 

(c). 

is the scaling law of friction for the pseudophase tran- 
sition region and also with the empirical relation 
obtained in ref. [ 181 for mixed-convective heat transfer 
to a supercritical-pressure water. Among other for- 
mulae, this relation gave the most acceptable results 
when compared with the entire set of experimental 
data obtained by the present authors for heat transfer 
to COZ within the range rnb = 50-800 kg mm2 s- ’ [17]. 
The replacement of the ratio Nu/Nu, by St/St, in this 
relation is of no importance. 

The data of Fig. I(c) show that the regimes studied 
are located at the edge of the region with a strong 
effect of buoyancy on heat transfer. At the bottom of 
Fig. l(c), a scale is given on which the values of the 
acceleration parameter are indicated [ 151: 

K = K,, f K, = 5,/T f Cr,,l(SRe,?) (4) 

(the plus sign refers to the upward, and the minus sign 
to the downward, flow). When K,, >> Kq, i.e. if the 
effect of buoyancy was weak, the parameter K was 
successfully used [ 15,191 for analyzing and correlating 
experimental data on deteriorated heat transfer. In 
this case, when values of Re are rather higher, 
Re > 5 x 104, the region of normal heat transfer, equa- 
tions (2), is determined by a simple condition 

K< l-l.3 (5) 

to which there correspond the asymptotic dis- 
tributions of shear stresses at the wall : 

(k),.+ I g R-2KY > (z/z,),~, = I-3Y. (6) 

When Kg 2 K,,, there is no simple relationship 
between the wall profile r/z, and parameter K. Never- 
theless, in this case too, it is convenient to use this 
parameter as a measure of the mutual relationship 
between the Archimedes, inertia forces and friction 
forces generated by the wall. In particular, all down- 
ward flow heat transfer regimes (Fig. 1), which satisfy 
condition (5) with some safety margin, have all the 
symptoms of normal heat transfer. The intrinsic 
(when I$ >> Ku) effect of buoyancy in an upward flow 
allowing one to speak about the deterioration of heat 
transfer is observed only when K x Kg 2 7 (regimes 
Nos. l-4). If other experimental data [17], which are 
not considered here, are taken into account, then the 
start of the negative effect of buoyancy on heat trans- 
fer can be determined by the condition R@ > 3. These 
figures are close to the theoretical estimate &,, = 5 
obtained in ref. PO]. 

Experimentat data on hydraulic and friction drag 
obtained in the works of the present authors for a 
large-diameter tube [21] allow a conclusion that under 
the conditions considered, with a substantial effect of 
buoyancy, there are no appreciable changes in the 
Boussinesq coefficient, i.e. the flow acceleration is well 
described by a one-dimensional model, whereas the 
friction drag obeys law (3) on the average. However, 
because of the relatively small value of the friction 
drag, the experimental values of < were obtained with 
a great error and their deviations from relation (3) 
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attained 2540% at separate points. This accuracy is 
insufhcient for analyzing the turbulent transport 
parameters. Therefore, in the case of appreciable devia- 
tions of experimental data of 5 from tN, the variant 
processing of the results of probe measurements was 
carried out. This allowed one to evaluate the effect of 
the error in the determination of < on the sought-after 
parameters of the averaged flow and to select those 
values of < which would ensure the mutual agreement 
of the entire packet of test data and the consistency 
with the requirements of the limiting transition to the 
classical concepts about the structure of flow. The 
analysis has shown that the indicated consensus is 

attainable when the values of 5 used for processing 
test data fit relation (3) with a deviation within k 5% 

for an upward flow and within 0+ (S-10%) for a 
downward flow. We shall come back to this problem 
in Section 4. Hereafter, if and when necessary, the 
indicated correction will be introduced into the test 
data presented in the figures with a special reference 
in the most important cases. 

3. VELOCITY AND ENTHALPY PROFILES 

A typical character of velocity profiles in the con- 
sidered modes of heat transfer is shown in Fig. 2. In 
this and all the other figures, the data that refer to 
different heat transfer regimes are labelled by the same 
points as in Fig. 1. In the case of an upward flow 
(Figs. 2(a) and (b)) in regimes Nos. 1, 5 and 6 the 
profiles of U/U~ over the entire tube length retain a 

convex shape; however, as the parameter K grows, 
they become increasingly flatter in the central part 
and fuller near the wall. This deformation already 
occurs within the thermal entrance region whereas 
with .x/d > 30 the changes in the profile of u,/uh are 
accumulated rather slowly. 

With regimes Nos. 24 in an upward flow the par- 

ameter K is rather high-of the order of 30-50; an 
intensive velocity profile deformation takes place 

which in the approach to section .r/d = 32.5 ter- 
minates in transition to an M-like form with the 
maximum not far from the wall and minimum on the 
tube axis. As shown in ref. f3], it is this very form of 
velocity which is capable of ensuring dynamic equi- 
librium between the Archimedes forces and shear 
stresses in the flow. Compa~ng the data of Figs. 1 and 2 

shows that the formation of the inlet wall temperature 
peak coincides with the stage of transition from a 
very flattened to an M-like velocity profile. A similar 
conclusion can also be drawn regarding the profile 
obtained in ref. [13]. The velocity maximum has 
the greatest peak at the end of the heat transfer 
deterioration region, whereas downstream a gradual 
smearing of this maximum takes place. This is due to 
both the change in the thermodynamic state of the 
heated liquid, which leads to the general decrease in the 
Archimedes forces, and a high level (which will he 
shown below) of turbulent transport in the trough 
of the M-like profile. 

f 

RS 

f.2 

/ 

0.8 

FE. 2. Velocity profiles (a, b. c, e) and mass velocity profile 

Cd). 

In all the regimes with a downward flow, the shape 

of the u/ub profile is retained which is usual for a 
turbulent flow, but with a certain trend toward flat- 
tening at the tube centre and filling in the outer region 
of the boundary layer (Fig. Z(c)). It should be noted 
here that with downward flow in the region with 
R < 0.8. slow fluctuations in the Pitot tube readings 
were observed which were not amenable to precise 
averaging. The construction of the measured velocity 
profiles has revealed that when R -c 0.8 many profiles 
have a wavy form as though there was a system of 
almost immovable vertical rings in the tube. These 
observations may be indicative of the development 
of specific large-scale structures in downward flows. 
When analyzing the test data the waves on the velocity 
profiles were attributed to measurement errors and 
were smoothed-out. Figure 2(c) presents the 
smoothed-out profiles of u/ub; the deviations of the 
test points from these curves may constitute k 2-3%. 
The mass velocity profiles at a distance from the 
entrance are shown in Fig. 2(d). It is seen that in the 
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case of an upward flow with considerable effect of 

Archimedes forces the profiles of pu/mb also acquire 
an M-like shape; here the mass velocities in the wall 
region grow, being conducive to heat transfer inten- 

sification. Conversely, the more extended profile of pu 
in regime No. 6 points toward a relative attenuation 
of heat transfer in the flow core. The typical form of 
velocity profiles in the wall law coordinates is shown 
in Fig. 2(e). The density and viscosity values for these 
variables were determined at the local enthalpy of the 
fluid. The points for regimes Nos. 4 and 6 were 
plotted at the corrected values of 5. The points for 
R > 0.995 (JJ’ < 30-100) have been obtained by mat- 
ching the u(R) curves in the zone of measurement with 

the curves in the laminar sublayer (y’ < 5) calculated 
from the known values of t,, qw, and 7,. It is seen 
that in the regimes with a relatively weak effect of 
buoyancy, a usual boundary layer structure with a 

logarithmic velocity profile section persists near the 
wall. Almost the same structure is also preserved in 
regimes Nos. 2-4 with a downward flow (the depar- 
ture of the curves from the von Karman profile line is 
partially due to an appreciable change in the viscosity : 
pb/pw z 2.3). On the other hand, with an upward flow 
in these regimes the velocity profiles deviate con- 
siderably upward from the standard profile thus indi- 
cating a relative attenuation in momentum transfer 
over the stretch of the profile located between the 
buffer region and the velocity maximum. As will be 
shown below, it is just over this stretch that shear 
stresses decrease rapidly and pass through the zero 
value. 

Figure 3 presents a typical form of the enthalpy 
fields and profiles in the considered regimes of heat 
transfer. From Fig. 3(a) it is seen that the input wall 
temperature peak is conditioned by the fluctuations 
of the thermal resistance of the thin wall layer ; these 
perturbations have almost no influence on the flow 
core heating (R < 0.95). Beyond the peak region oft, 
for an upward flow and outside the initial section 
(x/d > 30) for a downward flow, the heating of the 
flow approaches the uniform one 

ah/ax z ah,/ax. (7) 

In this case, when pv z 0, the distribution of heat 
fluxes is described by the relation [22] : 

(q/qw)stat, = ; oR E R dR. s 
The enthalpy profiles in the wall law coordinates are 

shown in Fig. 3(b) in comparison with the logarithmic 

profile at constant properties [23] : 

h+ = 2.12 lny+ +B(Pr). (9) 

The determination of the constant B(Pr) was made 
at Pr = Pr (for light points Pr z 1.7 and B z 11 ; for 
dark points, 0.9 and 5). In Fig. 4, the comparison 
between the distributions of the enthalpy resistance in 
the flow for an upward and downward flow is given. 

m 

a 32,5 62.5 92.5 

FIG. 3. Enthalpy field (a) and enthalpy profiles in the wall 
law coordinates (b). 

Since 

l/St = 
5’ 

u+h+ dR2, (IO) 
0 

the curves of Fig. 4 clearly show what flow regions 
are responsible for the observed differences in heat 
transfer. In regime No. 6 this is the central half of the 

12 roe 
/ 45 G 

FIG. 4. Distribution of enthalpy resistance over the flow 
section. 



3388 V. A. KIJKGANOV and A. G. KAPT~LNYI 

flow; whereas in regime No. 4 and in similar regimes 
Nos. 2 and 3 this is the wall region which precedes the 
velocity maximum of the M-like profile. It is in these 
regions that the splitting of the U’ and h+ profiles also 

is observed in Figs. 2(e) and 3(b). 
The z;rw profiles in Fig. 5(a) show that the indicated 

regions of deteriorated heat transfer correlate with the 
location of the understated (near zero) shear stresses 
and transverse velocity gradients, i.e. with the regions 
of lowered turbulent energy generation at the expense 
of an averaged flow. In the considered cases of large 
Reynolds numbers these regions are located as a rule 
outside the viscous and buffer zones of the boundary 

layer and exert a weak effect on their thermal 
resistance. 

Note that in regimes Nos. 1 and 6 with an upward 
flow, the distribution of r/zw near the wall is located 
already somewhat below that of (~/r~),,~ obtained 
from equation (6). but the difference is still not so 
appreciable and the heat transfer is close to the normai 
one, eyuanion (2). (When considering in Fig. 1 (b) the 
points for regime No. I. it is necessary to take into 
account that far from the entrance t, x t,,; therefore, 
the accuracy with which the enthalpy differences and 
Stanton numbers are determined is not so precise here 
as in other regimes.) Thus, relation (6) can be used 
for controlling the ‘normal value’ of heat transferred. 
Hall and Jackson [2] assumed that the negative effect 
of buoyancy and acceleration on heat transfer would 
become noticeable if r/r, < 0.9 at j’+ = 30. When 

FIG. 5. Profiles of shear stresses (a) and of radial heat fluxes 

(W. 

thermal acceleration prevails (K,, > Kg), this con- 
dition cannot be true, and the deterioration of heat 
transfer develop when (r/z,),, is closer to unity 
than to 0.9. In regimes Nos. I and 6, (s/tw) 10 = 0.95-- 
0.97; but in all the regimes with the input wall tem- 
perature peak (r/r,),, i: 0.9. Thus, in the regimes 
with the prevailing effect of Archimedes forces the 
criterion suggested in ref. [2] is confirmed by the 
results of the present measurements. 

Figure 5(b) shows that the profiles of q/yw far from 
the entrance adhere well to relation (8). (In different 
regimes the curves (Y/Y~)~,~~ differ somewhat from one 
another. In Fig. 5(b) the ‘medium’ curve has been 
drawn; the deviations of other curves from this one 
are of minor importance as compared with the scatter 
of test points.) 

An exception is the q/qw profile in regime No. 6 with 
an upward flow. It indicates a delay in heating the 
central portion of the flow as compared with the entire 
flow and the overheating of the wall layers which 
compensates for this delay. This pattern is typical of 
the cases of heat transfer dete~oration at moderate 
values of the parameter I(, when deformations of the 
Row develop rather slowly along the tube length. Simi- 
lar cases, which are especially characteristic for high 
mass flow velocities, were considered in refs. [16, 241. 

4. TURBULENT TRANSPORT 

Experimental data on turbulent transport are pre- 
sented in Figs. 6-8. According to equation (1) the 

values of E, and E, are related to the values of E,, 
calculated by Reichardt’s equation [25] : 

E,,& = 0.4 _r+ - I 1 tat&$ 
> 

, when _r+ ~50 

F ‘rR iv = 0,4Y+ 111.5+RX!-?R) 
3 ’ 

when y+ > 50. 

The results of calculations show [8, 9, 221, that the 
Reichardt model with the local properties at 

Pr, z 0.9-I allows one to describe rather well exper- 
imental data on normal heat transfer to various fluids 
with variable properties. This provides a reason to 
adopt the values given by equations (I 1) as ‘normal 
values’ of eddy diffusivity which would have occurred 
in the absence of the effect of buoyancy and thermal 
acceleration. 

In Figs. 68 the local values of E, and 8y are pre- 
sented for y+ > 100 and R > 0.2 when the velocity 
and enthalpy deviations with respect to the radius can 
be determined with an acceptable accuracy. In close 
vicinity to the wall, a numerical solution of equations 
(I) at the known values of q,,,, z,, r,, r/tw, and q/qw 
was made. The values of E, and Ed were prescribed in 
the form 
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FIG. 6. Relative eddy diffusivity of momentum and heat in 
the initial stage of the effect of buoyancy. 

IT 

FIG. 7. Relative eddy diffusivity of momentum and heat with 
substantial effect of buoyancy. 

FIG. 8. Turbulent Prandtl number vs Richardson number. 

0’ I 

-3 “““’ “““’ 
-I -d/ Jo/ 0 ROI at / R 

where 2, and 2, are constants the values of which 
were selected from the condition of the agreement on 
the average between the predicted and experimental 
values of u and h at R = 0.97499. The ratio z/zq 

gives the average value of the turbulent Prandtl num- 
ber near the wall. The mean data given in Figs. &8 
correspond strictly to the friction law (3); the cor- 
rection of the local values was made in those cases 
when the difference of experimental values of < from 
equation (3) lay outside the limits indicated in Section 
2. It should be also noted that the heat transfer data 
are given for section x/d > 32.5 where a suitable accu- 
racy in the determination of the 7/z, and q/qw profiles 
is ensured in the approach which was used for pro- 
cessing experimental data. In regimes Nos. 24 
(upward flow) with x/d >, 32.5, there already exists an 
M-like velocity profile. 

In regimes Nos. 1, 5, and 6 (Fig. l(b)) in which 

the effect of buoyancy and acceleration are of no 
consequence (these data are presented in Figs. 6 and 
8), the values of E, and E,, in the near-wall region at 
[/tN = 1 correspond well to the transfer model, 

equation (1 l), at Pr, zz 0.8+0.1. When t/tN = 1.1, 

the coefficients 2, grow. whereas &,‘s drop, and the 

number Pr, increases up to the level 0.9-1.1, also 
remaining close to the values which are used for calcu- 
lating turbulent heat transfer under usual conditions. 
Conversely, when </tN = 0.9, the values of Pr, drop 
to the level 0.5-0.7 and perceptibly differ from one 
another in different regimes. This allows a conclusion 
that at the initial stage of the effect of buoyancy and 
acceleration the turbulent transfer near the wall is 

described by the Reichardt model, equation (I l), 
whereas the friction drag in the considered region of 
thermodynamic states of the fluid satisfies relation (3) 

with a certain tendency for growing within N 10%. 
In regimes Nos. 2-4, i.e. in the case of a substantial 

effect of buoyancy, the coefficients zq in the near-wall 
region remain on the average at the level of unity, but 
the relative coefficients of momentum transfer 2, for 
a downward flow are higher than unity and for an 
upward flow are much lower than unity, with these 
differences increasing still greater if it is assumed that 



for an upward flow 5 < tN and for a downward flow, 
vice versa, 5 > thl. Accordingly, the values of Pr, in 
Fig. 8 also scatter. 

In all the cases, except for a fully ‘normal’ regime 
No. 5, deviations in the transport coefficients from re- 
lation (11) are observed in the flow core. They explain 
the aforegoing features of the flow structure and heat 
transfer. Thus, already in the initial stage of the effect 
of buoyancy, Fig. 6 shows clearly the differences in 
heat transfer in upward and downward flows which 
are responsible for distinct differences in heat transfer 
in Fig. I. With an upward flow the values of Z, and 
Z,, in the flow core are much smaller than unity, with 
the region of the lowest values coinciding with the flat 
stretches of the velocity profiles over which the shear 

stresses are also very small (see Figs. 2 and 5). An 
appreciable quantitative disturbance of the analogy 
between the momentum and heat transfer can be 
noted. In the case of a downward flow, attention is 

drawn to a strong growth of turbulent transfer in 
the central portion of the flow. Both phenomena are 
correlated with a substantial increase in the absolute 
values of the gradient Richardson number Ri testi- 

fying to an increasing role of density fluctuations in 
the processes of turbulent transfer. 

The data of Fig. 7 show that the transition to M- 
like velocity profiles for the processes considered is of 
fundamental importance as regards the elimination of 

tendencies toward heat transfer deterioration. In all 
the cases, including the sections with minimum heat 
transfer (the section x/d = 32.5 in regimes Nos. 2 and 
4), the coefficients Z, (and Z,) 2 1 in the trough of 

the M-like profile and may become even higher than 
for a downward flow. A certain decrease in heat trans- 
port is preserved only over the near-wall stretch of the 
velocity profile near the surface z = 0. Note that in 
all of the cross sections located after the inlet wall 

temperature peak, the velocity maximum is located 
much farther from the wall than the surface of zero 
shear stresses, i.e. there is the region with Z, < 0 and 
the 2nd kind discontinuity (Z, ---) + ~1) testifying to 
the arbitrariness of the eddy diffusivity E, obtained 
from equation (1) in the cases considered. With 
appreciable buoyancy effects the consideration of tur- 
bulent heat transfer from the usual standpoints of 
the hydrodynamic analogy is impossible, since the 
hydrodynamics itself becomes a function of the heat 
transfer process. In particular, while the Prandtl- 

Nikuradze formula [26] 

E, = /*]du/CQ (12) 

provides an idea about the ranges of variation of the 
coefficient Z, shown in Figs. 6 and 7, the calculation of 
the values of a,, from equation (12) at Pr, = const. =: 1 
would have led to a reduction in heat transfer rate 
and a distortion of the real pattern of wall temperature 
variation. 

As mentioned above, refs. [6, 71 have suggested 
techniques for taking into account the effect of buoy- 
ancy and acceleration on turbulent transport, includ- 
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ing the near-critical region. It is of interest to compare 
them with the data obtained. 

Petukhov and Medvetskaya [6, 81 used the gradient 
relations (1) for 7 and y and determined sy in terms of 
B, and turbulent Prandtl number. Expressions for c, 
and Pr, were obtained on the basis of simplified tur- 
bulence energy balance equations and intensity of 
enthalpy fluctuations written down with regard for 
density fluctuations [27]. After some transformations, 
the final relation for the eddy diffusivity ofmomentum 
can be stated as 

(13) 

where Ri, is the Richardson number to be employed 
in the case of an undisturbed velocity profile (the 
Reichardt profile). The coefficient x,, selected from 

experimental data, is a strong function of Re and Y, 
however, when Re > 2 x IO’, i.e. in our case, 
xi = const. = 1.6. It is also possible to neglect the 
change in Pr, in comparison with the usual value of 
the order of unity. For the regimes of Fig. 6, relation 
(13) gives the values Z, = Z, 2 1. The curves given 
by relation (13) and constructed for the data of Fig. 
7 allow one to conclude that the model considered 
corresponds qualitatively to the behaviour of the 
transport coefficients in a downward flow. However, 
with an upward flow, both the level and the dis- 
tribution of eddy diffusivities according to relation 
(13) contradict the experimental data. 

On the basis of algebraic relations for turbulent 
stresses and streams which were obtained by Gibson 
and Launder [28] and which take into account the 
contribution of body forces, Popov [7] has come to 
the following expressions 

E = Pr,&, = {E6+E~,iEL$Y,CoE.~/E}’ ’ (14) 

where the minus sign refers to Ri > 0 and the plus 
sign to Ri < 0 ; 

are the limiting expressions corresponding to the 
extreme cases Ri + 0 and Ri 4 00. For the constants 
the following values have been obtained : y , = 1.14 
and yz = 2.24. 

In calculations by this model it was assumed that 
Pr,, = 0.9-I. For determining the mixing path length 1, 
use was made of the hypothesis concerning the con- 
servative nature of the relation I = 1(r,, y, r,,, p, p). 
At moderate Richardson numbers, Ri < 1.5 (it is at 
almost these values that 7, z 7 = 0 according to equa- 
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tion (14)) and with y+ > 50 the Popov theory leads 
to the relationships 

where C, or C, = C, Pr,,/Pr, are the Richardson num- 
ber functions which tend to unity when Ri + 0. In this 
case, the difference of the transport coefficients from 
the Reichardt model, equation (1 1), is determined by 
the relative change in the profile of shear stress as 
compared with the normal distribution z/r, = R. The 
data of Figs. 68 show that the Popov theory also 
describes the quantitative values much better, as well 
as the behaviour of the experimental values of eddy 
diffusivities, especially in the region subjected to the 
effect of the wall, where, strictly speaking, this theory 
is valid. Systematic discrepancies can be noted in two 
cases: firstly, in the case of an upward flow in the 
initial stages of the deformation of the u and z profiles, 
when shear stresses in the flow core have not reached 
zero values as yet but the velocity profile is already 
very flat and the Richardson numbers are very high 

so that the theory predicts a considerable decrease in 
the turbulent Prandtl number, an inverse picture is 
first observed : Pr, 2 1. To confirm this conclusion, 
the corresponding points from the regimes with great 
flow rates of CO, are given additionally in Fig. 8 
(light rhombs). Secondly, the discrepancy between the 
theory and test data, just as in the levels of the values 
of Z,, Z,,, so in the numbers Pr,, is observed in the 
trough of the M-like profile. Here, when Ri < 0, low 
values of Pr, are observed in all of the cases, on the 
average, of the order of 0.6. This testifies to a quali- 
tative change in the mechanism of turbulence in this 
flow region. High values of transport coefficients and 
low values of the turbulent Prandtl numbers allow 
one to speak about a certain analogy with free tur- 
bulence. In Fig. 9 the test values of a, for &jay < 0 
are compared with the Prandtl equation [26] : 

where b = rmax. 

ET = K I&n,x - hl,“), (17) 

It can be noted that in each section 

FIG. 9. Free turbulence constant in the trough of M-like 
velocity profiles. 

the constant K, changes slightly along the radius but 
increases substantially along the tube length. The low- 
est values of K, are noted in the first instants of the 
existence of the M-like profile ; thereafter they increase 
and become stabilized. When this circumstance is 
taken into account numerically, then formula (17) 
may present one of the versions for solving the prob- 
lem of the description of turbulent transport in the 
troughs of the M-like velocity profiles. 

The experimental data considered allow one to 
make one other practical conclusion. Since the inlet 
wall temperature peaks appear in the initial stages of 

the transition to the M-like velocity profile, after 

which heat transfer increases substantially, such a 
method of the inlet peak equalization may turn out 
to be effective as the outlining of the heat flux profile 
in the initial section of the tube which would make it 
possible to overcome the unpleasant stages of flow 
deformation at reduced heat loads. 

5. CONCLUSIONS 

The test data presented allow one to come to the 

following conclusions : 

1. In the case of an upward flow the buoyancy- 

caused changes in heat transfer take place due to the 
changes in the structure of the mean flow-in the first 
place, in the shape of the velocity profile and in the 
distribution of shear stresses, as a result of which the 
value and the distribution of the eddy diffusivities of 
momentum and heat vary. There are no indications 
of the fact that the change in the turbulent transport 
could outstrip the change in the averaged flow struc- 
ture, as is adopted in the theory of the ‘initial’ effect 
of buoyancy [27]. 

The buoyancy-induced deterioration of heat trans- 

fer occurs on certain stages of flow rearrangement 
when the flow develops the regions in which low vel- 
ocity and shear stress gradients are coupled, i.e. the 
gradient generation of turbulence energy becomes 
weaker. In the studied range of high Reynolds num- 

bers (Rq, > 2 x 10’) such conditions appear in the 
turbulent flow core and they almost do not affect the 
viscous and buffer regions of the boundary layer. The 

development of the M-like velocity profile favour the 
enhancement of heat transfer in the flow. 

Already on the early stages of the effect of 

buoyancy, there occurs the disturbance of the analogy 
between the momentum and heat transfer which leads 
to a substantial difference in the coefficients a, and ay. 
In the case of a substantial effect of buoyancy, the 
gradient description of momentum transfer, equation 
(l), in the regions with small velocity gradients and 
shear stresses is insufficient. 

2. In the case of a downward flow, the buoyancy 
favours the enhancement of turbulent transfer, 
especially in the flow core, due to which the structure 
of averaged flow is preserved which is close to the 
conditions of normal heat transfer. Also preserved is 
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the stable level of heat transfer but somewhat higher 
than that predicted from equation (2) in the absence 
of the buoyancy effect. 

,2 

The data obtained allow one to speak about the 
difference between the mechanisms underlying the 13 
effect of buoyancy on heat transfer in upward and 
downward flows. 

3. The classical models of turbulent transfer 
14 

developed for non-perturbed flows do not allow one 
to adequately describe its variations occurring under 
the influence of buoyancy. Among the models of tur- 
bulent transfer [6, 71 that take into account the effect 

IS. 

of buoyancy, the Popov model seems to be more sub- 
stantiated; in the main features it agrees with the 
experimental data obtained. The insufficient agree- 16. 

ment of the theory [7] with experimental data can be 
noted in the case of downward flows and also in the 
region of troughs of the M-like velocity profiles in 
upward flows. 17. 
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